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1. Introduction 

Several studies have highlighted the link between viral infection and the development 

of autoimmunity [1-4]. Autoimmune diseases (AID) are characterized by the breakdown of 

immune tolerance and the activation of self-reactive lymphocytes. Many AID are 

multifactorial, involving both genetic and environmental factors, such as viral infections. 

Viruses represent the major environmental factor that triggers the development of 

autoimmunity in genetically susceptible individuals. There are multiple mechanisms by which 

viruses can induce an autoimmune reaction, including molecular mimicry, epitope spreading, 

bystander activation, the presentation of cryptic antigens, B-cell polyclonal activation, and 

viral superantigens [2, 4-7]. Many viruses have been suspected to trigger or exacerbate AID. 

The best examples of viruses inducing the development of AID are coxsackie virus, 

cytomegalovirus, Epstein Barr virus, and hepatitis B virus [2, 3]. We focus here on findings 

showing that coronavirus appears to also be associated with autoimmunity. 

 

2. Animal model systems 

 Coronaviruses cause diseases in a variety of species of animals, including humans. 

The pathogenesis and organ tropism of murine hepatitis coronaviruses (MHV) depends on the 

viral strain [8]. Neurotropic MHV strains (JHM and A59) have been the most frequently 

studied [8]. They induce encephalomyelitis, with demyelination, and serve as one of the few 

animal models for multiple sclerosis (MS)-like diseases. The role of coronaviruses in the 

development of autoimmunity has come from experimental studies in animal models. Murine 

coronavirus infection can induce autoreactive T-cells, B-cell polyclonal activation, and 

autoantibody production.  

Experimental autoimmune encephalomyelitis 

Watanabe et al. first reported that infection in Lewis rats with the murine coronavirus 

JHM can induce an autoimmune response. Lymphocytes from Lewis rats infected with 

murine coronavirus are sensitized to myelin basic protein and adoptive transfer of these 

lymphocytes leads to experimental allergic encephalomyelitis (EAE)-like lesions in recipient 

Lewis rats [9]. Mice infected with MHV 2.2-V-1 develop an immune-mediated demyelinating 

encephalomyelitis and Pewe et al. showed that the CD8 T cell-mediated demyelination is 

dependent on Interferon gamma (INF-) in MHV-infected mice [10]. Furthermore, MHV-4-

infection can also induce an autoimmune T-cell response in mice [11]. Infection with murine 

coronavirus can also induce the production of autoantibodies.  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Experimental coronavirus retinopathy (ECOR) 

Experimental coronavirus retinopathy (ECOR) was created in the 1990s [12]. The 

pathogenesis of this experimental retinal disease is based on three components, a viral 

component, genetic background, and an immunological component [12]. This degenerative 

retinal disease is characterized by an early phase, with retinal vasculitis and perivasculitis, and 

a late phase, with degenerative retinal disease [12]. The pathogenesis of MHV-induced retinal 

degeneration in BALB/c mice has been shown to be related to autoimmunity, with the 

presence of antiretinal autoantibodies and anti-retinal pigment epithelial-cell autoantibodies 

[13]. Two autoantigens,  fodrin and villin 2, have been identified in ECOR [14]. 

Furthermore, the CD4 T cells from MHV-infected BALB/c mice are specifically activated by 

 fodrin [14]. MHV strain 59 (MHV-59) is a coronavirus that triggers various pathologies in 

susceptible mice, such as hepatitis, thymus involution, polyclonal B lymphocyte activation, 

and, after intra-cerebral inoculation, transient demyelination [5, 15].  

Anti-erythrocyte autoimmunity 

Mice infected with MHV-59 and immunized with rat-blood erythrocytes develop high 

levels of anti-erythrocyte autoantibodies. In contrast, the authors observed only moderate 

autoantibody production by noninfected mice solely immunized with rat-blood erythrocytes, 

suggesting that the autoimmune response may be enhanced by MHV-59 infection [5].  

Mathieu et al. identified two liver proteins, fumarylacetoacetate hydrolase (FAH) and 

alcohol dehydrogenase (ADH), recognized by autoantibodies in the sera of MHV-A59-

infected mice [16]. The same authors then explored the cross-reaction between FAH and 

MHV proteins. The autoantibodies recognized cryptic and native FAH epitopes in MHV-

infected mice. Two homologous peptides of both FAH and the nucleocapsid were recognized 

by most antibodies [17].  

 

3. Common human coronaviruses and multiple sclerosis 

 Seven types of coronavirus are known to infect humans (Table 1). The most common 

human coronaviruses circulating worldwide are OC43, HKU1, NL63, and 229E [18]. 

Multiple sclerosis is an immune-mediated demyelinating disease in which infectious 

pathogens could play a role in the pathogenesis of the disease. The possible involvement of 

human coronaviruses as an environmental trigger of multiple sclerosis (MS) is supported by 

several studies. Antibodies to coronaviruses OC43 and 229E were found in the cerebrospinal 

fluid of MS patients more frequently and in higher titers than that of matched controls [19]. 
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Moreover, intrathecal antibody synthesis to OC43 and 229E coronaviruses has been found in 

41% and 26% of MS patients, respectively [19]. Human coronavirus HCV-229E can replicate 

in cultures of various human neuronal and glial cell lines [20]. Human coronavirus 229E viral 

RNA has been detected in the brain tissue of MS patients [21]. Molecular mimicry has been 

proposed as a putative mechanism in the pathogenesis of MS. T-cell lines isolated from MS 

patients show cross-reactivity between myelin basic protein and viral antigens from the 

human respiratory coronavirus 229E [22]. 

 

4. SARS-CoV and autoimmunity 

 In winter 2002-2003, severe acute respiratory syndrome (SARS) emerged in China 

and subsequently spread throughout the world. SARS is caused by a novel species of 

coronavirus that has been named SARS-CoV. SARS-CoV infection is characterized by a 

severe and potentially fatal lung disease. The pathogenic mechanisms of SARS include direct 

viral cytopathic effects, the dysregulation of cytokines/chemokines, the innate immune 

response, and the immunogenetics of the host [23, 24]. Several studies have suggested that 

autoimmunity may also be involved in the pathogenesis of SARS. During the acute phase of 

the disease, IgM and IgG autoantibodies against cytoplasmic antigens of pneumocytes were 

detected in the sera of 36 Chinese SARS patients [23]. In another cohort of 22 SARS patients, 

autoantibodies against human epithelial cells (the A549 human pulmonary epithelial cell-line) 

and human endothelial cells (human umbilical endothelial cells (HUVEC) and primary human 

pulmonary endothelial cells (HPEC)) developed approximately one month after the onset of 

the disease [25]. Sera from SARS patients with high-levels of autoantibodies induced 

complement-dependent cytotoxicity against A549 cells and HPEC [25]. Lin et al. also showed 

that antibodies present in the sera of SARS patients reacted with A549 epithelial cells (type-2 

pneumocytes) [26]. These autoantibodies were primilary of IgG isotype and were detectable 

20 days after the onset of fever, the IgG present in the sera of SARS patients had a cytotoxic 

effect on A549 cells [26]. Indeed, there are cross-reactive epitopes on domain 2 of the SARS-

CoV spike protein (S2) with human lung epithelial cell proteins. Anti-SARS-CoV spike 

antibodies enhance the adherence of human peripheral blood mononuclear cells to A549 cells 

[26]. Thus, the autoimmune responses in SARS-CoV infection may contribute to the 

pathogenesis of the disease.  

Other groups identified sequence homology between four pathogenic regions of the 

SARS-CoV spike protein and various human proteins [27]. A proteomic approach showed 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



annexin A2 to be an autoantigen in A459 cell-membrane extracts recognized by the sera of 

SARS patients and annexin A2 on lung epithelial cells was recognized by antibodies against 

SARS-CoV S2 [28]. Furthermore, anti-annexin A2 antibodies recognized purified S2 protein 

by ELISA. The authors also observed the upregulation of epithelial cell-surface expression of 

annexin A2 by Il-6 and INF- released during the cytokine storm in SARS infection [28]. The 

human long interspersed nuclear element 1 (LINE1) endonuclease domain was identified as a 

putative target of SARS-associated autoantibodies and these antibodies were found in 40.9% 

of patients with SARS [29]. 

 

5. Can SARS CoV-2 trigger autoimmunity ? 

  In December 2019, the first cases of patients with severe atypical pneumonia of 

unknown origin were reported in Wuhan, Hubei province, China. Most of these patients were 

epidemiologically linked to a seafood market in Wuhan. Pneumonia was caused by a novel 

coronavirus, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2 (previously 

known as 2019 novel coronavirus, 2019-nCoV, by the World Health Organization (WHO)). 

This newly emerged pathogen was isolated and sequenced in China [30, 31]. The disease 

caused by SARS-CoV-2 infection was later designated Coronavirus disease 2019 (COVID-

19) by the WHO. SARS-CoV-2 infection has rapidly spread throughout the world. On March 

11, 2020, the WHO declared the COVID-19 coronavirus outbreak a pandemic.  

 SARS-CoV-2 is the seventh type of coronavirus to be identified that infects humans. It 

belongs to the  coronavirus genus and has been classified under the orthocoronavirinae 

subfamily. Clinical presentation of COVID-19 mimics that of SARS-CoV infection. SARS-

CoV-2 shows phylogenetic similarity to SARS-CoV, with the two genomes sharing 79.6% 

sequence identity [31]. SARS-CoV-2 interacts directly with angiotensin-converting enzyme 2 

(ACE2) to enter host cells, particularly alveolar epithelial cells. The cellular entry of SARS-

CoV-2 is initiated through an interaction between the transmembrane spike (S) glycoprotein 

and the ACE2 receptor on human cells [32]. Furthermore, it has been shown that ACE2 was 

the same cell entry receptor for SARS-CoV [31] and that there is structural and sequence 

identity between the SARS-CoV-2 and SARS-CoV S glycoproteins [32]. COVID-19 is 

typically characterized by fever and respiratory illness, leading to acute respiratory distress 

syndrome, with admission to the intensive care unit (ICU) for 5% of patients [33]. However, 

several observations have shown that COVID-19 also shows a wide clinical spectrum, which 

includes cardiac injury in 20% of cases [34], venous thromboembolism in 25% of cases [35], 
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disseminated intravascular coagulation, neurological manifestations, or skin involvement. A 

cytokine storm can be associated with severe forms of the disease [36, 37]. A two-phase 

immune response is induced by SARS-CoV-2 infection [38]. First, a specific adaptative 

immune response leads to viral clearance in most cases. However, immune dysregulation can 

occur in a subgroup of patients and lead to inflammation-induced lung damage and systemic 

complications. SARS-CoV-2 infection may therefore be associated with not only an auto-

inflammatory response but also the development of an autoimmune process. Given the 

striking similarity between SARS-CoV infection and COVID-19, it is possible that COVID-

19 may trigger an autoimmune process through molecular mimicry or the exposure of 

autoantigens caused by cytokine-induced organ injury.  

 Several reports have highlighted the link between COVID-19 and the development of 

autoimmunity. Patients with severe SARS-CoV-2 infection show a high risk of thrombosis 

[39]. The presence of antiphospholipid antibodies (APL) (anticardiolipin IgA and anti-2 

glycoprotein I IgA and IgG antibodies) has been reported in three patients with COVID-19 

and multiple cerebral infarctions [40]. APL are common during infection. Such APL can be 

pathogenic but they also transiently arise in the context of viral infection. Harzallah et al. 

reported the presence of lupus anticoagulant (LA) in almost half of 56 patients with COVID-

19 [41]. However, in a letter to the editor, Connell at al. suggested that the LA results may be 

false positives, given the high C-reactive protein levels in patients with COVID-19 [42]. 

Endothelial cell infection and diffuse endothelial inflammation were observed in a series of 

patients with COVID-19 and endothelial-cell injury was associated with apoptosis [43]. 

Therefore, it is possible that epitopes of host proteins became abnormally expressed on the 

plasma membrane surface of apoptotic endothelial cells, leading to the generation of 

autoantibodies, such as APL.  

Several cases of Guillain-Barré syndrome in patients with COVID-19 have been 

reported [44-48]. GBS is an acute polyradiculoneuropathy associated with an aberrant 

autoimmune response and is generally preceded by a viral or bacterial infection. Although the 

pathogenic mechanisms need to be established, we cannot rule out molecular mimicry 

between viral epitopes and nerve antigens in the peripheral nerves, as has been suggested as 

one of the possible mechanisms for Zika virus-associated GBS [49]. However, no production 

of antibodies against specific gangliosides has been reported in patients with COVID-19 and 

GBS. Miller Fisher syndrome (MFS), a variant of GBS, is characterized by a triad of ataxia, 

areflexia and ophtalmoplegia. Several publications reported cases of MFS associated with 
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COVID-19 infection. Only one patient was positive for anti-ganglioside GD1b IgG antibodies 

[50]. 

 Other autoimmune disorders associated with COVID-19 include Immune 

Thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). COVID-19 has 

been identified as a causal factor of ITP in a 65-year-old woman with HTA and autoimmune 

hypothyroidism [51]. Other authors described the first case series of 3 patients with ITP 

associated with COVID-19 [52]. Lazarian et al. reported seven cases of warm and cold AIHA 

associated with COVID-19 [53]. However, an indolent B cell malignancy was present in four 

of them. Furthermore, another case of AIHA during COVID-19 was reported in a 46-year old 

female with a medical history of congenital thrombocytopenia [54]. Several other 

hematologic disorders have been associated with COVID-19 such as cold agglutinin 

syndrome, Evans syndrome or autoimmune thrombotic thrombocytopenic purpura [55-57]. 

The structural similarity between an erythrocyte membrane protein named ANK-1 and the 

viral protein spike led Angileri et al. to postulate that molecular mimicry could contribute to 

the pathogenesis of COVID-19-associated AIHA [58]. 

 In a single-center, retrospective study from an ICU of China’hospital (province of 

Hubei), the authors described clinical and autoimmune characteristics in 21 severe or critical 

cases of patients infected with SARS-CoV-2. They detected the presence of anti-52 kD 

SSA/Ro antibodies, anti-60 kD SSA/Ro antibodies, and antinuclear antibodies in 20%, 25%, 

and 50% of patients, respectively [59]. More recently, a study from the ICU of Evangelismos 

Hospital, Athens (Greece), showed the presence of several autoantibodies related to systemic 

autoimmune rheumatic diseases in almost 70% of severely ill patients with COVID-19 [60]. 

The major autoimmune findings for both SARS-CoV and SARS-CoV-2 are reported in Table 

2.  

As already described for SARS, the spike surface glycoprotein could play a role in 

COVID-19-associated immunopathology. Kanduc and Shoenfeld suggested that because the 

peptide sharing between spike glycoprotein from SARS-CoV-2 and human surfactant-related 

proteins, the immune response following SARS-CoV-2 infection might contribute to the 

SARS-CoV-2-associated lung diseases [61]. However, SARS-CoV-2 includes numerous other 

proteins that could represent an antigen source for the development of autoimmunity. Lyons-

Weiler performed a bioinformatics analysis of the homology between highly immunogenic 

SARS-CoV-2 epitopes and human proteins. Among the SARS-CoV-2 proteins, those with the 

largest number of immunogenic peptides were the S protein and the non-structural protein 

NS3 [62]. Vojdani and Kharrazian reported a potential cross-reactivity between SARS-CoV-2 
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proteins (spike and nuclear proteins) and human tissue antigens [63]. Lucchese and Flöel 

reported that the SARS-CoV-2 proteome share three sequences of six aminoacids (GSQASS, 

LNEVAK, SAAEAS) with three human proteins (DAB1, AIFM, SURF1) related to the 

respiratory pacemaker in the brainstem. The authors postulated that molecular mimetism 

between neuronal and viral proteins might contribute to autoimmune mediated respiratory 

failure [64]. Angileri et al. also suggested that some features of COVID-19 such as anosmia, 

leukopenia and multi-organ damage could be the consequence of similarities between SARS-

CoV-2 proteins (ORF7b, ORF1ab, nucleocapsid phosphoprotein) and the following human 

proteins: OR7D4, PARP9 and SLC12A6, respectively [65].  More recently, Megremis et al. 

identified three immunogenic linear epitopes with high sequence identity to SARS-CoV-2 

protein in patients with autoimmune dermatomyositis [66]. On the basis of these reports, 

autoimmunity may be, at least partially, involved in the pathogenesis of COVID-19 in 

genetically predisposed individuals. Further studies will be needed to better characterize the 

possible link between COVID-19 and the development of autoimmunity, particularly in 

patients with severe interstitial pneumonia.  

6. Conclusion 

 Coronaviruses represent a large group of virus affecting many species of animals and 

humans, causing acute and chronic diseases. From animal models to human diseases such as 

SARS and COVID-19, several studies have highlighted the possible role for autoimmunity 

through molecular mimicry in coronavirus pathogenesis. The wide spectrum of autoimmune-

like manifestations in SARS-CoV-2-infected patients suggests that COVID-19 represents the 

better example of coronavirus-induced autoimmunity. However, it would be useful to better 

characterize the role of autoimmunity in pathogenesis COVID-19, particularly in patients with 

severe forms of disease. 
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Table 1 

Human coronavirus types 

Common human coronaviruses 

229E (alpha coronavirus) 

NL63 (alpha coronavirus) 

OC43 (beta coronavirus) 

HKU1 (beta coronavirus) 

Other human coronaviruses 

MERS-CoV (the beta coronavirus reponsible for Middle East Respiratory Syndrome, 

MERS) 

SARS-CoV  (the beta coronavirus reponsible for severe acute respiratory syndrome, SARS) 

SARS-CoV-2 (the novel beta coronavirus that causes Coronavirus disease 2019, COVID-

19) 

 

Table 2 

 

Major autoantibodies reported in SARS-CoV and SARS-CoV-2-infected patients 

 

SARS-CoV SARS-CoV-2 

  

Anti-lung epithelial cell 

Anti-endothelial cell 

Anti-annexin A2 

Anti-endonuclease of the human LINE1 

 

Antiphospholipid antibodies 

     - anti-cardiolipin antibodies 

     - anti-2 glycoprotein I antibodies 

     - lupus anticoagulant 

Anti-nuclear antibodies 

p-ANCA and c-ANCA 

Anti-CCP antibodies 

Anti-ganglioside GD1b antibodies 

 
CCP, cyclic citrullinated peptide ; ANCA, anti-neutrophil cytoplasmic antibody 
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Highlights 

 Murine coronavirus infection can induce autoreactive T and B cell 

activation and autoantibody production 

 Molecular mimicry-based autoimmunity has been reported in severe acute 

respiratory syndrome (SARS) caused by the beta coronavirus SARS-CoV 

 The new beta coronavirus SARS-CoV-2 could act as trigerring factor for 

the development of several autoimmune manifestations  
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